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1 Introduction

Laser-plasma interaction (LPI) [1] is an important plasma-physics
problem which poses serious challenges to theoretical modeling. LPI
is the basis of several applications, including laser-based particle ac-
celeration [2] and the backward Raman amplifier [3]. Moreover, for
inertial confinement fusion (ICF)[4, 5] to succeed, LPI must not be so
active that it prevents the desired laser energy from being delivered to
the target, with the desired spatial and temporal behavior. This paper
focuses on modeling the backscatter instabilities, where a laser light
wave (mode 0) decays into a backscattered light wave (mode 1) and
a plasma wave (mode 2). In stimulated Raman scattering (SRS) and
stimulated Brillouin scattering (SBS), the plasma wave is, respectively,
an electron plasma wave and an ion acoustic wave. These are the LPI
processes presently considered to pose the largest risk to indirect-drive
ICF [5].

A wide array of computational tools is used to model LPI, ranging
from rapid (∼secs) calculations of linear gains along 1D “ray” profiles
to massively-parallel kinetic particle-in-cell simulations. We present
here a new tool, called deplete, to the less computationally expensive
end of this spectrum. deplete solves for the pump intensity and
scattered-wave spectral density for a set of scattered frequencies, in
steady-state, along a 1D profile of plasma conditions. Pump depletion
is included, and the plasma waves are assumed to be in the strong
damping limit (i.e., they do not advect). Fully kinetic (although linear)
formulas are used for various quantities like the coupling coefficient.
Bremsstrahlung noise and damping, as well as Thomson scattering
(TS), are included. The deplete model, especially the noise sources,
in some ways resembles that of Ref. [6]. Other similar works which
have influenced our thinking, and use 1D coupled-mode equations, are
Refs. [7]-[8].

deplete is similar to the code newlip, which calculates linear
gains for SRS and SBS along 1D profiles (newlip is briefly discussed
on p. 13 of Ref. [9], and also here in Appendix A). Both codes run
very quickly, taking seconds or less to analyze one ray path from the
laser entrance to the high-Z wall in an ICF ignition design. However,
deplete includes substantially more physics than newlip, such as

pump depletion, bremsstrahlung and Thomson noise sources, and re-
absorption of the scattered waves. deplete moreover provides pump
and scattered intensities, which unlike gains can be directly compared
with experiment and more sophisticated LPI codes. Despite its sim-
plicity, deplete nonetheless agrees well in certain cases with results
from the 3D paraxial laser propagation code pf3d. This is quite
promising given deplete’s much lower computing cost. The favorable
comparison also vindicates the use of the simple 1D models embodied
in newlip and deplete.

There is important physics which deplete does not capture, with
laser speckles or hot spots being one of the most important. Recent
SBS experiments [10, 11] at the Omega Laser Facility [12] show good
agreement between measured reflectivity and pf3d predictions, while
deplete gives a lower value. Sec. 7 describes a crude way to put
an upper bound on speckle effects by doubling the coupling coeffi-
cient; the two deplete reflectivities then bracket the experimental
results. A more sophisticated idea for handling speckles is outlined in
the conclusion. deplete with its unmodified coupling coefficient gives
a lower bound on the reflectivity of a speckled, phase-plate-smoothed,
laser beam. Additional beam smoothing, like polarization smoothing
(PS) and smoothing by spectral dispersion (SSD), reduce the effec-
tive speckle intensity and can reduce the reflectivity even below the
speckle-free deplete level.

The paper is organized as follows. Section 2 presents the governing
equations, starting with equations for quasi-monochromatic complex
wave amplitudes and ending with equations for the pump intensity
and scattered-wave spectral density. The numerical method is given
in Sec. 3, including a quasi-analytic solution for the coupling-Thomson
step. Section 4 compares deplete with newlip linear gains and pf3d
“plane-wave” simulations on prescribed profiles with linear gradients
in plasma conditions. The relationship between Thomson scattering
and linear gain is discussed in Sec. 5. We show in Sec. 6 that doubling
deplete’s coupling coefficient brackets the experimental and pf3d
SBS reflectivities in recent Omega shots. In Sec. 7, we use deplete to
analyze a 285 eV NIF ignition design; in particular, we show the effect
of scattered light re-absorption and put a bound on speckle effects. We
conclude and discuss future prospects in Sec. 8. A review of newlip is
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presented in Appendix A, including the precise definition of its linear
gain Gl. Appendix B gives details of the numerical method for solving
deplete’s coupling-Thomson step.

2 Governing equations

Our approach is to derive coupled-mode equations, in time and one
space dimension, for the slowly-varying, quasi-monochromatic com-
plex wave envelopes, and find the resulting intensity equations. We do
this for the light waves first, and then the plasma wave in the strong
damping limit. We take these equations in steady state to apply in-
dependently at each scattered frequency, and transition to a spectrum
of scattered light per angular frequency. This may be viewed as a
“completely incoherent” treatment of the scattered light at different
frequencies. Bremsstrahlung damping and fluctuations, and TS, are
then added phenomenologically. Focusing of the whole beam is finally
accounted for, giving the system deplete solves. This lengthy sec-
tion culminates in the deplete system, Eqs. (55-56), on which some
readers may wish to focus.

2.1 light-wave action equations

Let z represent the distance along the ray path, and assume all wave
vectors and gradients are in that direction (∂x = ∂y = 0). z = 0 is
taken as the left edge of the domain (the “laser entrance”), where we
specify the right-moving pump laser; we also specify boundary values
for the left-moving backscattered wave at the right edge z = Lz. The
light waves are linearly polarized in y and represented by their vector
potentials ~Ai = (1/2)Ai(z, t)ŷe

iψi + cc, where i = 0, 1 for the pump
and scattered wave, respectively. Ai is the slowly-varying complex en-
velope, and we use the dimensionless ai ≡ eAi/(mec). ψi(z, t) is the
rapidly-varying phase with ki ≡ ∂zψi and ωi ≡ −∂tψi. Let σi ≡ ki/|ki|
with σ0 = σ2 = +1 and σ1 = −1 (appropriate for backscatter). Ther-
mal fluctuations in the plasma give rise to both light waves and plasma
waves. However, upon appropriate averaging the field amplitudes of
these fluctuations vanish (but their mean squares do not). The am-
plitudes Ai (and nj2 below) represent only the coherent, and not the

noise, components of the fields. We insert a bremsstrahlung noise
source and TS to the intensity equations below.

From the Maxwell equations, Ay, the y component of the total vector

potential ~A = ~A0 + ~A1, satisfies[
∂tt − c2∂zz

]
Ay =

e

ε0
ñevye. (1)

We work in the Coulomb gauge ∇ · ~A = 0. ñj = nj + Nj2 is the
total number density for species j (j = e for electrons, i for any ion
species), Nj2 = (1/2)nj2e

iψ2 +cc, and nj2 is the slowly-varying plasma-
wave envelope. We define ωpj ≡ [njZ

2
j e

2/ε0mj]
1/2, vTj ≡ [Tj/mj]

1/2

and λDj ≡ vTj/ωpj, with Zj the charge state. As usual, the ions
are treated as fixed in the transverse current term on the RHS of
Eq. (1) due to their large mass. (We look forward to a circumstance
where a positively-charged species must be considered mobile, such
as an electron-positron plasma!) We use conservation of canonical
transverse momentum to relate vye and Ay: mevye = eAy. This yields[

∂tt − c2∂zz + ω2
pe

]
Ay = −ω2

pe

ne2
ne
Ay. (2)

To derive the envelope equations, we introduce the small ordering
parameter δ:

δ ∼ ω−1
i ∂t ln(Ai, ki, ωi, ne) (3)

∼ k−1
i ∂x ln(Ai, ki, ωi, ne). (4)

Formally, we order ∂t, ∂x ∼ δ and ψi ∼ δ−1 in Eq. (2). See Sec. III of
Ref. [13] for details. In addition, we take the coupling on the right-
hand side to be order δ. To leading order (δ0), we obtain the free-wave
dispersion relation

ω2
i = ω2

pe + c2k2
i i = 0, 1. (5)

Although this is a nonlinear PDE for ψi, for steady-state conditions
considered below we take ωi to be constant and find the eikonal
cki(x) = σiηiωi with ηi ≡ [1 − ne/nci]

1/2 the index of refraction and
nci ≡ ω2

i ε0me/e
2 the critical density of mode i. Also, the group ve-

locity vgi ≡ σiηic. Our analysis generally assumes ω0,1 > ωpe. To

2



include regions where this is not the case (especially SRS from profiles
extending to ωpe & ω0/2), we gracefully “turn off” certain coefficients
and set the wave intensities to zero.

The order δ terms in Eq. (2) yield the envelope equations. The order
δ2 terms contain second derivatives of the envelope and are neglected.
We also assume perfect phase matching: k0 = k1+k2 and ω0 = ω1+ω2.
Collecting only the resonant terms gives

L0a0 = − i
4

ω2
pe

ω0

ne2
ne
a1, (6)

L0a1 = − i
4

ω2
pe

ω1

n∗e2
ne
a0. (7)

The operator Li ≡ ∂t+vgi∂z+(1/2ωi)(∂tωi+c
2∂zki). Slow variation in

ki and ωi is needed to correctly recover the standard action-evolution
equations, which we presently derive.

For our quasi-monochromatic (slowly-varying) light waves (i =
0, 1), the action density [14] is Ni ≡ (me/8πre)ωiaia

∗
i where re ≡

(e2/4πε0)/mec
2 ≈ 2.82 fm is the classical electron radius. We also

define the (positive) action flux Zi ≡ Ni|vgi| and intensity Ii ≡ ωiZi.
In practical units,

|ai|2 =
Iiλ

2
i

Pemηi
(8)

where λi ≡ 2πc/ωi and Pem ≡ (π/2)mec
3/re ≈ 1.368× 1018 W·cm−2 ·

µm2. We form Eq. (6)×a∗0 + cc and Eq. (7)×a∗1 + cc to find

∂tN0 + ∂zZ0 = −J, (9)

∂tN1 − ∂zZ1 = J, (10)

J ≡ −1

4
mec

2 Im[a∗0a1ne2]. (11)

The coupling term J is usually positive, as shown by Eq. (22) (but see
the discussion following Eq. (56)).

2.2 plasma-wave action equations

We describe the plasma waves following the dielectric operator ap-
proach of Cohen and Kaufman [15]. We ultimately treat the plasma

waves in steady-state (∂t = 0) and the strong damping limit (∂z = 0),
where the dielectric becomes an ordinary function. But this calcula-
tion reveals the validity of the latter approximation, and allows for
extensions with advection or explicit time dependence.

Using the linearized Vlasov equation, the total charge-density fluc-
tuation envelope n2 ≡ −ne2 +

∑
i Zini2 experiences a ponderomotive

drive npnd from the beating of modes 0 and 1:

ε(ω′2 + i∂t, k2 − i∂z)n2 = npnd, (12)

npnd ≡ 1

2
χe(ω

′
2, k2)

c2k2
2

ω2
pe

nea0a
∗
1. (13)

ω′2 ≡ ω2 − ~k2 · ~u is the Doppler-shifted plasma-wave frequency in the
frame moving with the plasma flow ~u (ω2 is in the lab frame). ε ≡ 1+χ
is an operator, where the time and space derivatives reflect envelope
evolution and χ ≡

∑
j χj is the total susceptibility. χe in npnd is

taken simply as a function, as opposed to an operator. χj is the
(linear) kinetic, collisionless susceptibility of species j (we assume all
distributions are Maxwellian):

χj ≡ −
1

2k2
2λ

2
Dj

Z ′(ζj); ζj ≡
ω′2

k2vTj
√

2
. (14)

Z(ζ) ≡ iπ1/2e−ζ
2
erfc(−iζ) is the plasma dispersion function [16], where

erfc denotes the complimentary error function [17]. Gauss’s law relates
n2 and nj2:

ne2 = −(1 + χI)n2, (15)

ni2 = −χi
(

1

Zi
+
me

mi

ε

χe

)
n2 (16)

≈ −χi
Zi
n2, (17)

with χI ≡
∑

i χi. For SRS, where the ion motion is negligible, we
usually make the replacement 1+χI → 1 in the code to save computing
time.

Expanding ε for slow envelope variation, and retaining only εr ≡ Re ε
in the derivatives, gives

[ε(ω′2, k2) + iε̇∂t − iε′∂z]n2 = npnd. (18)
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ε̇ ≡ ∂εr/∂ω
′
2 and ε′ ≡ ∂εr/∂k2. Dividing by iε̇, we find

[∂t + vg2∂z + ν2 + iδω2]n2 = −inpnd

ε̇
. (19)

vg2 ≡ −ε′/ε̇ is the plasma-wave group velocity, ν2 ≡ Im[ε]/ε̇ is the
collisionless damping rate, and δω2 ≡ −εr/ε̇ is the phase detuning.
This makes contact with the usual envelope equation.

We now assume the plasma wave is in the strong damping limit,
where its advection is neglected. This also implies that the instability
is below its absolute threshold so that steady-state solutions are ac-
cessible. Quantitatively, this holds if |vg2∂zn2| � |ν2 + iδω2||n2|. The
result is

[∂t + ν2 + iδω2]n2 = −inpnd

ε̇
. (20)

In steady-state, this becomes a simple, local relationship between n2

and npnd:

ε(ω2, k2)n2 = npnd. (21)

This follows directly from Eq. (12) by setting ∂t = ∂z = 0, but the
more detailed derivation reveals the validity condition for the strong
damping limit.

Replacing ne2 via Eqs. (15) and (21) yields a new form for the cou-
pling term J , dependent only on the variables for modes 0 and 1:

J = ω0Γ̃1Z0Z1. (22)

The coupling coefficient Γ̃1 is

Γ̃1 ≡ ΓSIm
[χe
ε

(1 + χI)
]

(23)

=
ΓSgΓ

|ε|2
, (24)

ΓS ≡ 2πre
mec2

1

ω0

k2
2

k0|k1|
, (25)

gΓ ≡ |1 + χI |2Imχe + |χe|2ImχI . (26)

The second form of Γ̃1 exhibits the resonance for |ε| � 1. The over-
tilde on Γ̃1 indicates it will be modified below to account for beam

focusing. Γ̃1, and thus J , are usually positive. We now have a closed
system for modes 0 and 1, with no independent equation for mode 2:

∂tN0 + ∂zZ0 = −ω0Γ̃1Z0Z1, (27)

∂tN1 − ∂zZ1 = ω0Γ̃1Z0Z1. (28)

2.3 Steady-state equations for a spectrum of scat-
tered waves

At this point we transition to steady state (∂t = 0) and work with
intensities (although one can generalize what follows to include time
evolution). Since we have assumed ∂zωi = 0, we multiply Eq. (27) by
ω0 and Eq. (28) by ω1 to obtain

dzI0 = −ω0

ω1

Γ̃1I0I1, (29)

−dzI1 = Γ̃1I0I1. (30)

The bremsstrahlung source and TS which we will soon incorporate
are expressed not in terms of intensity but spectral density i1(z, ω1),
which is the intensity per angular frequency interval. The scattered
intensity is then I1 =

∫
dω1 i1. We take the scattered-wave equation

to apply independently at each ω1, and integrate the coupling term in
the pump equation, to find

dzI0 = −
∫
dω1

ω0

ω1

Γ̃1I0i1, (31)

−∂zi1 = Γ̃1I0i1. (32)

This is a totally incoherent treatment of the scattered light at different
frequencies, and is unrealistic to the extent there is spectral “leakage”
between nearby ω1 intervals due to, e.g., envelope evolution.

2.4 Bremsstrahlung source and damping

We incorporate electron-ion inverse-bremsstrahlung light-wave damp-
ing (κ0 and κ1) phenomenologically for modes 0 and 1, as well as
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bremsstrahlung noise (Σ̃1) for mode 1, to find

dzI0 = −κ0I0 −
∫
dω1

ω0

ω1

Γ̃1I0i1, (33)

−∂zi1 = −κ1i1 + Σ̃1 + Γ̃1I0i1. (34)

As for Γ̃1, the over-tilde on Σ̃1 denotes it will be modified due to
focusing.
I0 and i1 represent integrals over solid angles in k space, which we

now specify. Absolute solid angles are needed in the noise sources, and
cannot be simply scaled away, because scattered intensities (relative
to the pump strength) determine pump depletion. We follow closely
Bekefi’s book [18] in this section. We take Ii = ∆ΩiIi,Ω for i = 0, 1
(see Secs. 1.6 and 1.7 of Bekefi). Ii,Ω is the intensity per solid angle
interval dΩ, which we assume is constant over the solid angle ∆Ωi that
participates in the scattering. However, ∆Ωi varies with z according
to ∆Ωi(z) = ∆Ωv

i ηi(z)
−2, where ∆Ωv

i is a constant “vacuum” solid
angle. We set ∆Ωv

0 = ∆Ωv
1 = Ωc, where Ωc is the solid angle of k0 that

falls in the beam’s F cone. This is reasonable if the scattering mostly
occurs in laser speckles that are near diffraction-limited. We relate Ωc

to the cone aperture half-angle θc and laser optics F-number F by

Ωc ≡ 2π(1− cos θc) ≈
π

4F 2
, (35)

cos θc ≡
[
1 +

1

4F 2

]−1/2

≈ 1− 1

8F 2
. (36)

The approximate forms apply for F � 1.
The upshot of the solid angle discussion (see especially Eq. (1.133)

of Bekefi) is
Σ̃1 = Ωcη

−2
1 j(ω1), (37)

where j(ω) is the emission coefficient jω of Bekefi, per dΩ and in one
polarization. For j we use the results on p. 134 of Bekefi:

j(ωi) =
ηi

12π3
√

2π

ω4
pe

vTe

mere
c

∑
j∈ions

nj
ne
Z2
j ln Λej. (38)

ln Λej is sometimes called the Gaunt factor and resembles the Coulomb
logarithm, although it arises in calculations that do not impose ad hoc

cutoffs on impact parameter integrals (see Chap. 3 of Bekefi). For the
case ωi > ωpe, Bekefi finds Λej = vTe/(ωibmin) where

bmin =

{
γ
4

~√
meTe

if Te > 77Z2
j eV,(

γ
2

)5/2
Zjre

mec2

Te
otherwise.

(39)

The first, high-Te case typically applies for hohlraum conditions. The
numerical pre-factors come from a detailed binary-collision calcula-
tion, and γ = eC ≈ 1.781 where C ≈ 0.577 is the Euler-Mascheroni
constant. Our expression for j does not include the enhanced emission
for ωi ≈ ωpe due to collective effects [19], which may be important for
modes with nci ≈ ne.

We find the absorption coefficient κi via Kirchoff’s law (see Bekefi
Sec. 2.3):

κi =
j(ωi)

η2
iBv(ωi)

. (40)

Our κi equals Bekefi’s αω. Bv is the vacuum blackbody spectrum for
one polarization, with units dI/(dω dΩ):

Bv(ω) ≡ ~
8π3c2

ω3

e~ω/Te − 1
(41)

≈ ω2Te
8π3c2

~ω � Te. (42)

j given above was found for collision durations short compared to the
light-wave period, which entails the Jeans limit ~ω � Te. We therefore
use the approximate form of Bv to obtain

κi =

√
2

3
√
π

rec

ηiω2
i

ω4
pe

v3
Te

∑
j∈ions

nj
ne
Z2
j ln Λej. (43)

We only include bremsstrahlung when the plasma is under-dense (ωi >
ωpe) for a given frequency; in the opposite case, we set κi = Σ̃1 = 0.

For an optically thick plasma (∂zi1 = 0), and in the absence of
the pump (I0 = 0), we obtain for i1 from Eq. (34) the optically-thick
fluctuation level iOT

1 :

iOT
1 ≡ Σ1

κ1

=
Ωc

f
Bv(ω1). (44)
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We thus recover the familiar blackbody spectrum, required by Kir-
choff’s law. The common factor η2

1 that usually appears in the black-
body spectrum in a plasma is absent due to our treatment of solid
angles. f is defined in Sec. 2.6.

2.5 Thomson scattering

Thomson scattering (TS) refers to scattering off plasma-wave fluc-
tuations resulting from particle discreteness ([20], p. 308). Had we
retained a separate plasma wave equation, the fluctuations would ap-
pear in it via Čerenkov emission [6]. It is an important noise source
for backscatter, especially for SBS. We utilize the form factor S from
Eq. (138) of Ref. [20], valid for arbitrary (non-Maxwellian) distribu-
tions, generalized to multiple ion species:

(2π)−1|ε|2S(~k, ω) = |1 + χI |2Fe + |χe|2
∑
j∈ions

nj
ne
Z2
jFj (45)

Fj ≡
∫
d3v fj(~v)δ(ω + ~k · ~v). (46)

fj is the distribution function of species j normalized so that
∫
d3v fj =

1. For a Maxwellian,

Fj =
1

kvTj
√

2π
e−ζ

2
j =

(kλDj)
2

πω
Imχj, (47)

and

ω|ε|2

2(kλDe)2
S = gτ ≡ |1 + χI |2Imχe + |χe|2

∑
j∈ions

Tj
Te

Imχi. (48)

This form agrees with the multiple-ion result in Eq. (3) of Ref. [21].
Since TS transfers energy between the pump and scattered waves,

we include it in both equations:

dzI0 = −κ0I0 −
∫
dω1

ω0

ω1

I0(τ1 + Γ̃1i1), (49)

−∂zi1 = −κ1Z1 + Σ̃1 + I0(τ1 + Γ̃1i1). (50)

The Thomson cross-section is contained in τ1, which for a Maxwellian
plasma is:

τ1 ≡ Ωc

2π
ner

2
eψS(k2, ω

′
2) =

τSgτ
|ε|2

, (51)

τS ≡ Ωcψ

4π2

reTe
mec2

k2
2

ω′2
. (52)

ψ ≡ 1 − sin2 θs sin2 θp. θs is the angle between ~k0 and ~R, the vector
from source to “observation point”. For a beam with large F , most of
the backscatter occurs near the beam axis, and θs ∼ θc � 1 (for large
F ). θp is the difference between the azimuthal angles (in the plane

normal to ~k0) of ~A0 and ~R, which for a cylindrically symmetric beam
and linearly polarized pump varies uniformly over 2π. We take ψ = 1,
which may somewhat overstate the actual Thomson level.

It is useful to note that iτ ≡ τ1/Γ1 sometimes plays the role of an
effective seed level for i1:

iτ ≡
τ1
Γ1

=
τSgτ
ΓSgΓ

. (53)

For the special case Ti = Te, we have gτ = gΓ and iτ is independent of
χj:

iτ =
τS
ΓS

=
Ωcψ

(2π)3

ω0

ω′2
Tek0|k1|, Ti = Te. (54)

This fact is used in Sec. 5 to discuss the relation of TS to linear gain.

2.6 Whole-beam focusing

We wish to incorporate the effects of whole-beam focusing in a simple
way. The equations as written hold locally in z, but do not model
focusing. To do this, we treat the transverse intensity patterns of I0
and I1 to be uniform flattops of varying area A(z). The beam focuses
at the focal spot zF , where A attains its minimum A(zF ). Let Ĩi ≡
Ii(z)/f(z) be the total power at z divided by the focal spot area, with
focusing factor f ≡ A(zF )/A(z) ≤ 1. Substituting (I0, i1) = f · (Ĩ0, ĩ1)
into Eqs. (49-50), and freely commuting f with ∂z, yields the principal
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equations solved by deplete:

dzI0(z) = −κ0I0 − I0

∫
dω1

ω0

ω1

(τ1 + Γ1i1), (55)

∂zi1(z, ω1) = κ1i1 − Σ1 − I0(τ1 + Γ1i1). (56)

The untilded coefficients are

Γ1 ≡ f Γ̃1 Σ1 ≡ f−1Σ̃1. (57)

In Eqs. (55-56) and henceforth, all Ii and i1 are understood to have
suppressed over-tildes, that is, refer to total transverse powers over
focal-spot area. Similarly, the plasma-wave amplitude from Eq. (21)
can be written

n2

ne
=

1

2

χe
ε

[
ck2

ωpe

]2

f ã0ã
∗
1 (58)

with ãi ≡ Ĩiλ
2
i /(Pemηi); see Eq. (8).

All symbols in Eqs. (55-56) are positive, with one possible exception.
Γ1 may be negative for SBS in case the Doppler-shifted plasma-wave
frequency, ω′2, is negative. This corresponds to the scattered wave
having a higher frequency than the pump, in the plasma frame. The
scattered wave then gives energy to the pump, and deplete handles
this situation correctly.

3 Numerical method

We wish to solve Eqs. (55-56) from the laser entrance (z = 0) to the
end of the ray (z = Lz). For backscatter (considered in this paper),
we give I0L and i1R(ω1) as boundary conditions, where fL ≡ f(z = 0)
and fR ≡ f(z = Lz). We solve this two-point boundary value problem
via a shooting method, marching from right to left. We guess I0R
and solve the initial value problem from z = Lz down to z = 0, and
iterate until the resulting I0L is sufficiently close to the desired value.
Because I0R is just one scalar, it is more feasible to shoot on it than
on the set of values i1L(ω1). Generalizing our approach to 3D, where
one would have to shoot on I0R(x, y) over a transverse plane, is much
more difficult; a different technique for 3D pump depletion is used in

the code slip [22]. For the right-boundary seed value i1R, we either
use 0 or the optically-thick iOT

1 from Eq. (44). The choice seems to
have little effect, since volume sources (either TS or bremsstrahlung)
typically produce a comparable (or larger) noise level after a short
distance.

We solve the governing equations, Eqs. (55-56) by operator splitting
[23, 24]. Let the operator B solve the “bremsstrahlung” system

dzI0 = −κ0I0, (59)

∂zi1 = κ1i1 − Σ1, (60)

and the operator C solve the “coupling-Thomson” system

dzI0 = −I0
∫
dω1

ω0

ω1

(τ1 + Γ1i1), (61)

∂zi1 = −I0(τ1 + Γ1i1). (62)

To advance the solution from the discrete gridpoint zn down to zn−1

(the decreasing index matches deplete’s right-to-left marching), we
first apply B for a half-step, then C for a full step, then B for a
half-step again. The splitting theorem guarantees that, as long as B
and C are second-order accurate operators, then the overall step is
second-order accurate as well. Schematically, a complete step is

{I0, i1}n−1 = B1/2C1B1/2{I0, i1}n. (63)

A main application of deplete is to plasma profiles generated by
hydrodynamic simulations. Typically, we are given plasma conditions
like density and temperature along a 1D ray path for a set of z values.
The z-dependent coefficients in the governing equations are therefore
known only at prescribed points {zn}. We use linear interpolation
to find the coefficients at the needed intermediate points, as shown
below. We stress that the numerical accuracy of deplete is strongly
influenced by the quality of the given plasma conditions.

3.1 The bremsstrahlung step B

B must solve Eqs. (59-60) with κi and Σ1 constant, to at least second-
order accuracy. This linear system is readily solved analytically. Since
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there are two “half-steps” of B in Eq. (63), we consider a generic
step of size ∆z with initial conditions {I0, i1}1, yielding new values
{I0, i1}0 . X1/2 = (X0 + X1)/2 denotes the zone-centered value of

some quantity X. If κ
1/2
1 6= 0, we find

I0
0 = I1

0 exp[κ
1/2
0 ∆z], (64)

i01 = (i11 − i
OT,1/2
1 ) exp[κ

1/2
1 ∆z] + i

OT,1/2
1 . (65)

Eq. (65) applies separately at each ω1. For the special case κ
1/2
1 = 0,

Eq. (65) is replaced with

i01 = i11 + Σ
1/2
1 ∆z (κ1/2 = 0). (66)

The rightmost B in Eq. (63) advances the system from zn to zn−1/2.
Accordingly, for this step, the needed coefficients in Eqs. (64-66) are
interpolated at 1/4 the way from zn to zn−1: X1/2 = [(1/4)Xn−1 +
(3/4)Xn] . Similarly, the leftmost B in Eq. (63) advances the system
from zn−1/2 to zn−1 and uses X1/2 = [(3/4)Xn−1 + (1/4)Xn]. In both
cases ∆z = (zn − zn−1)/2.

3.2 The coupling-Thomson step C

We now turn to the C operator. I0 is evolved via a conservation law
of the C system, Eqs. (61-62), namely

dz

[
I0 −

∫
dω1

ω0

ω1

i1

]
= 0. (67)

On the discrete z grid, this gives

In−1
0 = In0 +

∫
dω1

ω0

ω1

(in−1
1 − in1 ). (68)

Before doing this, we must advance i1 using Eq. (62) with constant
I0 = In0 (that is, we neglect pump depletion within a zone). This
gives rise to a numerical challenge. Namely, the coefficients τ1 and Γ1

are both proportional to |ε|−2, and contain a narrow resonance where
Re ε = 0 if Im ε is small (that is, where the beating of the light waves
drives a natural plasma wave). Integrating through these sharp peaks

with a standard ODE method like Runge-Kutta performs very poorly
unless the resonance is well-resolved by the z grid (which it usually is
not on the z grids from hydrodynamic codes). To alleviate this prob-
lem, the key observation is that ε itself varies slowly in space, even
though |ε|−2 varies rapidly near resonance. We can therefore repre-
sent ε as linearly varying with z across a cell, and analytically solve
the resulting system. We merely quote the result here, and refer the
reader to Appendix B for the derivation and definition of the relevant
quantities:

in−1
1 = (in1 + iτ )e

BΓ∆wn − iτ . (69)

4 Benchmark on linear profiles

This section compares the results of deplete with those of newlip
and pf3d on two contrived profiles with weak linear gradients, one for
SRS and another for SBS. deplete and pf3d embody quite different
physical models, each with their own approximations and limitations.
One can view their favorable comparison here as a “cross-validation”
of these models in a regime where they should agree.

To compare with the newlip linear gain Gl (see Appendix A), we
need a noise level against which to compare the deplete scattered
spectrum at the laser entrance, i1L. For this noise level we choose ibr1
at z = 0, given by solving Eq. (56) with just the bremsstrahlung terms
and in the absence of the pump laser (I0 → 0):

∂zi
br
1 = κ1i

br
1 − Σ1. (70)

Note this is exactly Eq. (60). We then introduce the deplete gain
Gd:

Gd ≡ ln
i1L
ibr1L

=
“scattering′′

“noise′′
, (71)

where i1L is the solution to the full deplete equations. Gl and Gd

are exactly equal under the following conditions: there is no pump
depletion, no TS (τ1 = 0), no absorption of scattered light (κ1 = 0),
and no volume bremsstrahlung noise (Σ1 = 0); the only seeding in
deplete is then via the boundary values i1R(ω1).
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4.1 SRS benchmark

The spatial profiles of our SRS benchmark plasma conditions are
shown in Fig. 1. We use a profile length Lz = 510λ0, pump vac-
uum wavelength λ0 = (1054/3) nm, fully-ionized H ions with Ti = 1
keV, and no plasma flow (~u = 0). In both the deplete and pf3d
runs of this section, SBS was not included. Fig. 2 plots the result-
ing reflectivities for several pump strengths. Although these are all
above the homogeneous absolute instability threshold of Iab0 ≈ 0.21
PW/cm2, the time-dependent pf3d runs rapidly approach a steady
state and show no signs of a temporally-growing mode 1. The weak
gradients, or incoherent noise source, may lead to stabilization. After
increasing exponentially with I0L for weak pumps, the reflectivity rolls
over. This saturation due to pump depletion is generic for three-wave
interactions in the strong damping limit, as demonstrated analytically
by Tang [25].

We compare the gains Gl and Gd from newlip and deplete, for
several pump strengths, in Fig. 3. The general shapes of the gains
are quite close, although their absolute levels differ. For the weakest
pump strength, where pump depletion plays little role (as can be in-
ferred from the reflectivity plot in Fig. 2), the peak Gd is slightly higher
than Gl. This is due to the volume sources in deplete, namely TS
and bremsstrahlung noise. To illustrate this, we plot Gd found with
no Thomson scattering (τ1 = 0) as the black dotted curve. It is in-
termediate between the two other curves near the peak, and overlaps
Gl away from the peak. The curves for the two larger values of I0L
in Fig. 3 show Gd to be progressively farther below Gl at peak. This
results from pump depletion, which the reflectivity plot clearly shows
is significant for I0L & 0.8 PW/cm2. The bremsstrahlung noise level
ibr1 varies between (2.4-4.1)×10−9 W/cm2/(rad/sec) over λ1 = 650 to
550 nm.

We also compared deplete to the massively-parallel, paraxial laser
propagation code pf3d [26]. This code solves for the slowly-varying
envelopes of the pump laser, nearly-backscattered SRS and SBS light

1The homogeneous absolute instability threshold Iab
0 is such that the undamped

amplitude growth rate γ0(Iab
0 ) satisfies γ0 = (1/4)|vg1vg2|1/2(κ1 + κ2) where κ2 ≡

2ν2/vg2 is the plasma-wave spatial energy damping rate.

 0  200  400

0.136

0.137

0.138

0.139

2.15

2.20

2.25

z / λ0

n e
 / 

n c
0,

  s
ol

id

T
e 

 (
ke

V
),

  d
as

he
d

Figure 1: Plasma conditions for SRS benchmark.

waves, and the daughter plasma waves, in space and time. A carrier
ωen is chosen for each mode (except for the ion acoustic wave), and the
corresponding rapid time variations are averaged over. A local eikonal
ken, given by the appropriate ωen and dispersion relation with local
plasma conditions, contains the rapid space variation. Kinetic quan-
tities, such as Landau damping rates and Thomson cross-sections, are
variously found from (linear) kinetic formulas or fluid approximations.
There is no bremsstrahlung source, but the pump and scattered light
waves all experience inverse-bremsstrahlung damping. The plasma
waves undergo Landau damping, and the advection term vg2∂xn2 is
retained (i.e., they are not treated in the strong damping limit). The
noise source in pf3d is plasma-wave fluctuations chosen to produce
the correct TS level, and uniformly distributed over a square in k⊥
space (corresponding to the transverse x and y directions) extending
to half the Nyquist k in both kx and ky.

To replicate the 1D model of deplete, we performed “plane-wave”
simulations in pf3d. The incident laser at the z = 0 entrance plane
is uniform in the x and y directions (i.e., there is no structure like
speckles), both of which are periodic with size Lx = Ly = 128λ0 and
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Figure 2: (Color online.) SRS reflectivity vs. pump intensity for the
SRS benchmark profile of Fig. 1. The black circles and red squares
are for pf3d and deplete, respectively.

Figure 3: (Color online.) deplete gain Gd (black solid), newlip gain
Gl (red dashed), and Gd with no TS for I0L = 0.4 PW/cm2 (τ1 = 0,
black dots), for SRS benchmark. Thomson scattering and volume
bremsstrahlung noise enhance Gd over Gl for the smallest I0L, while
pump depletion suppresses Gd for the larger two.

grid spacing dx = dy = 1.33λ0. The z spacing is dz = 2λ0. As
described above, the TS noise fills a square in k⊥ space extending to
kx, ky = ±k1n, with k1n = (3/16)k0v and k0v ≡ ω0/c. We enveloped
the SRS backscattered light around ωen1 = 0.592ω0 (λ1=593.3 nm),
which has the highest linear gain. Over the slight variation of our
profile, the average ken1 = 0.461k0v.

deplete requires a solid angle Ωc, which we express in terms of an
F-number F , for TS (as well as bremsstrahlung emission, which we did
not include in the pf3d comparisons). Taking ken1 and k1n to determine
the focal length and spot radius, one finds F = ken1 /2k1n = 1.23. The
scattered light does not uniformly fill the noise square in k⊥ space, but
rather develops into a somewhat hollow “ring” with a radius ≈ 0.12k0v

(departing more from a square for stronger pumps); there is some
ambiguity in the appropriate F to use. We choose F = 1, which leads
to very close reflectivities for the weakest-pump case shown in Fig. 2,
and is near the noise-square estimate F = 1.23. Sidescatter at these
angles may stress the accuracy of pf3d’s paraxial approximation.

Figure 2 shows the deplete and pf3d SRS reflectivities for the
benchmark profile. The pf3d values are taken at t =39.4 ps, after
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which time all reflectivities remain roughly constant (the laser ramped
from zero to full strength over 10 ps). The agreement is quite good,
especially in the linear (weak pump) and the strongly-depleted (strong
pump) regimes. This increases confidence in the validity of the differ-
ent approximations made in both codes. It took about 2 secs of wall
time for deplete to run on one Itanium CPU, as opposed to 5300
secs on 16 of these CPUs for pf3d to advance 10 ps.

4.2 SBS benchmark

We performed an SBS benchmark (with SRS neglected) using the pro-
files in Fig. 4. The ions were fully-ionized He (Z = 2, A = 4) with
Ti = Te/5. The parallel flow velocity u is shown normalized to the
local acoustic speed c2a ≡ (ZTe + 3Ti)/Amp. The pump wavelength
and profile length match the SRS benchmark. The SBS reflectivity
vs. pump strength is plotted in Fig. 5, which shows pump depletion
for I0L & 1.25 PW/cm2. We estimate the absolute threshold Iab0 = 2.6
PW/cm2 and stay below this. We used F = 1.7 since this gives good
agreement with pf3d “plane-wave” simulations for low I0. However,
for larger values of I0 a ring in k⊥ space develops, similar to the SRS
runs, and is accompanied by a large increase in reflectivity.

Figure 6 compares the deplete and newlip gains, Gd and Gl.
For the smaller two pumps we see the enhancement of Gd over Gl

due to TS (even though pump depletion has set in for the second case
I0L = 1.4 PW/cm2), as discussed in Sec. 5. The dotted black curve for
I0L = 0.6 PW/cm2 is Gd computed with no TS, and shows the modest
increase in Gd stemming from bremsstrahlung volume (as opposed to
boundary) noise. The elevated plateau of Gd to the left of the peak is
also due to TS. I0L =2.5 PW/cm2 gives Gd < Gl due to strong pump
depletion. In all cases the wavelength and width of the main peak of
the two spectra are similar. ibr1 , the bremsstrahlung solution, varies
slightly from (4.17-4.25)×10−9 W/cm2/(rad/sec) over λ1−λ0 = 20 to
-3 Å.

Figure 4: SBS benchmark profile.
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Figure 5: SBS reflectivity for SBS benchmark profile. The squares are
deplete results, and the dashed line is an extension of the low-I0L
results.
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Figure 6: (Color online.) SBS deplete gain Gd (black solid), newlip
gain Gl (blue dashed), and Gd without TS for I0L =0.6 PW/cm2

(τ1 = 0, black dotted), for SBS benchmark profile.

5 The relation of Thomson scattering to

linear gain

As seen in our benchmark runs, TS leads to an enhancement of the
deplete gain compared to the newlip gain (for negligible pump
depletion). This is readily seen via the scattered-wave equation with
just coupling and TS, Eq. (62):

∂zi1 = −I0(τ1 + Γ1i1). (72)

We use Eq. (53) to obtain

∂zi1 = −γ(iτ + i1). (73)

γ ≡ I0Γ1 is the spatial gain rate. Typically, γ has a narrow peak in z
at the resonance point, while iτ varies slowly. For simplicity, we hold
iτ constant at the resonance point, and solve for i1 across the region
z = 0 to Lz which includes the resonance. In our usual notation,

i1L = (i1R + iτ )e
Gl − iτ . (74)

Gl ≡
∫ Lz

0
dz γ is the newlip linear gain. For Gl � 1, i1L = i1R(1 +

G) + iτG, and emission due to the boundary source dominates over

TS. In the opposite limit,

i1L = (i1R + iτ )e
Gl , eGl � 1. (75)

TS therefore gives rise to an effective boundary source iτ (for a nar-
row resonance). In this sense, it does not significantly alter the shape
of the gain spectrum (iτ varies slowly with ω1). However, it does lead
to a difference in the absolute magnitude of the scattered spectrum, as
embodied in an “absolutely-calibrated” gain like the deplete gain Gd

(where the bremsstrahlung emission is used as the noise level). As an
illustration, let us take i1R = iOT

1 , the optically-thick bremsstrahlung
result of Eq. (44), for simplicity evaluated at the resonance point in
the Jeans limit ~ω1 � Te. Moreover, we set Ti = Te so that iτ assumes
the simple form of Eq. (54). The effective seed is then

i1R + iτ → iOT
1

(
1 + fη0η1

ω2
0

ω1ω′2

)
. (76)

The second term on the right (= iτ/i
OT
1 ) is typically . 10 for SRS: for

our SRS benchmark, iτ/i
OT
1 ≈ 3. But, it can be quite large for SBS

since ω0 � ω′2 (for our SBS benchmark, iτ/i
OT
1 ≈ 400). A similar result

is found in Ref. [6]. The authors explain this on the thermodynamic
ground that bremsstrahlung and Čerenkov emission (which produces
TS) generate equal light- and plasma-wave action, so the light-wave
energy dominates by the frequency ratio. This manifests itself in the
ω0/ω

′
2 ratio in Eq. (76), which is much larger for SBS.

6 Simulation of SBS experiments

Experiments have been conducted recently at the Omega laser to study
LPI in conditions similar to those anticipated at NIF[27]. These shots
use a gas-filled hohlraum, and a set of “heater” beams to pre-form
the plasma environment. An “interaction” beam is propagated down
the hohlraum axis after being focused through a continuous phase
plate (CPP)[28] with an f/6.7 lens to a vacuum best focus of 150
µm. The plasma conditions along the interaction beam path have
been measured using Thomson scattering [29] validating 2-dimensional
hydra [30] hydrodynamic simulations that show, 700 ps after the
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rise of the heater beams, a uniform 1.5-mm plasma with an electron
temperature of ≈2.7 keV [31].

Figure 7(a) displays the instantaneous SBS reflectivity increasing
exponentially with the interaction beam intensity 700 ps after the rise
of the heater beams. These experiments employed a 1 atmosphere
gas-fill with 30% CH4 and 70% C3H8 to produce an electron density
along the interaction beam path of 0.06nc0. Three-dimensional pf3d
simulations agree well with the experiments [32]. Unlike the plane-
wave simulations discussed in Sec. 4.1, these simulations include the
full speckle physics. The deplete results (blue solid curve) fall well
below the experimental data in the regime where pump depletion does
not play a significant role (I0 . 2 PW/cm2). This indicates that
speckles are enhancing the SBS.

To put an upper bound on the speckle enhancement, we consider
how much the coupling increases for the completely phase-conjugated
mode [33]. This mode has a transverse intensity pattern perfectly cor-
related with that of the pump, and therefore enhances the coupling
coefficient Γ1 [34]. For an RPP-smoothed beam with intensity distri-
bution ∼ e−I/Ic , this effectively doubles Γ1. The blue dashed curve
in Fig. 7 shows the deplete results with twice the nominal coupling.
The two deplete curves bracket the experimental reflectivities. The
threshold intensity for which SBS equals 5% is 1.8 PW/cm2 and 0.9
PW/cm2 for deplete with the nominal and twice-nominal coupling,
respectively. The experimental threshold is about 1.5 PW/cm2.

Comparison of deplete and pf3d is displayed in Fig. 7(b). These
calculations were performed using plasma conditions from a hydra
simulation, for a configuration similar to that of Fig. 7(a), but with
a higher heater-beam energy. The resulting conditions are similar,
except the electron temperature is higher (about 3.3 keV). The de-
plete reflectivity with the nominal coupling (solid blue curve) lies
below the pf3d results for the two intermediate values of I0. This
demonstrates speckle effects enhance the pf3d reflectivity. The de-
plete results for 2×Γ1 (dashed blue curve) brackets the pf3d results
before strong pump depletion occurs, as for the experimental data.
Preliminary analyses have been done with deplete and pf3d for a
series of Omega experiments designed to study the role of ion Landau
damping on SBS [11]. These also show a significant enhancement due

to speckles, which are bracketed by deplete with the 2× Γ1 method
just described.

7 Analysis of NIF ignition design

In this section, we exercise deplete on an actual NIF indirect-drive ig-
nition target design. The target was designed using the hydrodynamic
code lasnex [35]. For more details about the design see Ref. [36];
LPI analysis for this and similar ignition targets, including massively-
parallel, 3D pf3d simulations, can be found in Ref. [37]. The design
utilizes all 192 NIF beams (at 351 nm “blue” light), which deliver 1.3
MJ of laser energy. We analyze LPI along the 30◦ cone of beams (one
of the two “inner” cones). The pulse shape for one quad (a bundle of
four beams), expressed as nominal intensity at best focus, is shown in
Fig. 8, and reaches a maximum of 0.33 PW/cm2. The speckle pattern
for a quad approximately corresponds to an F-number of F = 8, which
we use for deplete’s noise sources (but each beam individually has
F = 20 optics). The focal spot is elliptical with semi-axis lengths of
693, 968 µm. The peak temperature of the radiation drive is 285 eV.
The materials are as follows: the capsule ablator is Be, a plastic (CH)
liner surrounds the laser entrance hole, the hohlraum wall is Au-U
with a thin outer layer of 80% Au-20% B (atomic ratio), and the ini-
tial fill gas is 80% H-20% He. The lower-Z components are included
in the last two mixtures to reduce SBS by increasing the ion Landau
damping of the acoustic wave.

We performed deplete calculations, with both SRS and SBS, at
several times and over 381 ray paths for each time. Ray-based analysis
of target designs, namely by computing newlip gains Gl, is a routine
first assessment of LPI risk at LLNL. At each time, a set of ray paths
are traced using randomized initial conditions within each cone, and
accounting for refraction. Plasma conditions and laser intensity are
then found along these refracted rays. We run deplete on each ray
separately, using the initial intensity at a point chosen at a suitably
low density. This yields a spectrum of reflected light, and a pump
intensity, versus distance along the ray.

We now must take an appropriate “average” over the rays to char-
acterize the LPI on a cone. Regarding newlip gains, this has led
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Figure 7: (Color online.) (a) SBS reflectivity for Omega experiments
with CH gas fill and Te ≈ 2.7 keV (described in text). Black cir-
cles are measured values, the blue solid curve is deplete calculations
with the nominal coupling Γ1, and the blue dashed curve is deplete
calculations with 2 × Γ1. (b) deplete and pf3d SBS reflectivities
for a similar configuration but Te ≈ 3.3 keV. Black crosses are pf3d
simulations, and the blue curves are the deplete results as in (a).
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Figure 8: Nominal intensity at best focus for 285 eV NIF ignition
design (“NIF example”), found by dividing the laser power per quad by
the focal spot size. The peak intensity corresponds to 6.9 TW/quad.
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Figure 9: (Color online.) Materials and laser beam cones for NIF
example.

to several approaches. These include averaging the gain, finding the
maximum gain, or averaging eGl . This last method stems from assum-
ing there is no pump depletion and noise sources are independent of
scattered frequency; in this limit, the reflectivity should be roughly
proportional to eGl . However, this averaging, and a fortiori taking
the maximum, can be dominated by gains that are unphysically larger
than allowed by pump depletion or other nonlinearity. One can at-
tempt to include pump depletion via a Tang formula for Gl at each ω1

[25].

deplete allows for more physical ray-averaging schemes. To the
extent the transverse intensity pattern of a cone is uniform, each ray
should be taken to represent the same incident laser power. Averag-
ing deplete’s ray reflectivities then measures the fraction of incident
power that gets reflected. Pump depletion is of course included, which
limits backscatter along high-gain rays in a physical way. The reflec-
tivities and scattered spectra plotted here are simple averages over the
rays.

The ray-averaged reflectivities for several times near peak laser
power, for the 30◦ cone, are shown in Fig. 10. The results for three
different cases are presented. First, the solid lines give the reflectivi-
ties computed with the unmodified deplete equations. To quantify
the role of re-absorption of scattered light in the target, we re-ran
deplete with κ1 = 0. This leads to the dashed lines. Finally, to
bound the enhancement due to speckles, we plot the results when Γ1

is doubled (and κ1 6= 0) as the dotted lines.

The spectra of escaping SRS and SBS light (averaged over rays)
are shown in Fig. 11-12. The SBS feature at a wavelength shift of
5-8 Å comes from the Be ablator blowoff. A much weaker feature
appears from 12-13 ns at 12-15 Å, and occurs in the gas fill. The SRS
spectrum is more irregular, showing two main features separated by
≈20 nm that move to higher λ1 as time increases. In addition, there
are narrow features at higher λ1 that originate near the hohlraum
wall; these would be reduced in a ray-averaged gain, since the exact
λ1 active for each ray depends sensitively on conditions near the wall
and therefore varies from ray to ray. Re-absorption strongly suppresses
these high-λ1 spikes, as is seen in the SRS spectra with and without
re-absorption at t = 13.75 ns in Fig. 13.
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Figure 10: (Color online.) deplete SRS and SBS ray-averaged re-
flectivities I1L for NIF example. Solid lines are the nominal case (re-
absorption and Γ1 unscaled), dashed lines are the nominal Γ1 but no
re-absorption of scattered light (κ1 = 0), and dotted lines are 2 × Γ1

with re-absorption.

Figure 11: (Color online.) SRS streaked spectrum i1L for NIF example,
nominal case (κ1 6= 0, 1× Γ1).
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Figure 12: (Color online.) SBS streaked spectrum for NIF example,
nominal case (κ1 6= 0, 1 × Γ1). The white-yellow streak from 5-8 Å
occurs in the Be ablator, while the weaker feature from 12-15 Å occurs
in the gas fill.

Figure 13: (Color online.) deplete SRS spectrum at time 13.75 ns for
NIF example, smoothed over ≈ 1 nm. The black solid and red dashed
lines are computed with (κ1 6= 0) and without (κ1 = 0) re-absorption
of scattered light, respectively.
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Figure 14: (Color online.) (a) Laser transmission for NIF example
at 12.5 ns (peak power): black solid curve is the nominal deplete
solution with pump depletion, dashed red curve is with just inverse-
bremsstrahlung absorption, and black dotted curve is the deplete
solution with 2×Γ1. (b) SBS (blue) and SRS (red) scattered intensities
for the nominal deplete solution. Calculation of intensity at a given
ne is described in text.

Besides backscatter, deplete also provides the pump intensity
I0(z) along each ray. This indicates how much laser energy is trans-
mitted to a given location, which is a crucial aspect of a whether LPI
degrades target performance. In cases where the backscattered light
undergoes significant absorption as it propagates out of the target (as
happens to SRS for the design analyzed here), the measured reflectiv-
ity can understate the level of LPI. The laser transmission can reveal
this fact. Figure 14(a) presents I0, averaged over all the rays, at a
given ne. This is a 1D presentation of how much energy reaches a
given density, although in the full 3D geometry different rays reach
the same ne at different locations. I0 with just pump absorption, as
well as the deplete solutions with pump depletion for the nominal
case and 2×Γ1, are shown. Pump depletion is barely discernible in the
nominal case, but is significant in the 2×Γ1 case. For instance, in the
latter case I0 at ne/nc0 = 0.2 is only 60% of its absorption-only value.
The wavelength-integrated SRS and SBS are shown in Fig. 14(b), and
the scattered spectra vs. ne are shown in Figs. 15-16. SRS in partic-
ular develops at several different densities, corresponding to different
wavelengths, as can be seen in Figs. 13 and 15.

8 Conclusions and future prospects

We have derived a steady-state, kinetic model for Brillouin and Ra-
man backscatter along a ray path, that includes pump depletion,
bremsstrahlung damping and fluctuations, and Thomson scattering.
This model is implemented by the code deplete, which we have pre-
sented as well. This work extends linear gain calculations, by including
more physics while retaining the low computational cost of ray-based
methods. In particular, deplete provides the scattered-light spec-
trum and intensity developing from physical noise, which can be com-
pared against more sophisticated codes and experiments. The trans-
mitted pump laser along the ray is also found, which is important
for assessing an ICF target design, especially when re-absorption of
scattered light reduces the escaping backscatter from the “intrinsic”
backscatter level.

We presented benchmarks of deplete on contrived, linear profiles,
as well as analysis of Omega experiments and a NIF ignition design.
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Figure 15: (Color online.) SRS spectral density i1 vs. ne/nc0 and λ1,
in decibels, at 12.5 ns (peak power), for NIF example.

Figure 16: (Color online.) SBS spectral density i1 vs. ne/nc0 and
λ1 − λ0, in decibels, at 12.5 ns (peak power), for NIF example.
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The benchmarks reveal the deficiencies of linear gain, namely the ne-
glect of TS, pump depletion, and re-absorption. Comparisons with
pf3d provide a cross-validation of the two codes in a regime where
they should agree. The Omega SBS experimental data, as well as
pf3d simulations of these shots, show much more reflectivity than
deplete gives, for intensities where pump depletion is weak. This
enhancement is due to speckle effects. We showed an upper bound on
this enhancement is given by doubling the deplete coupling coeffi-
cient Γ1, which comes from considering the phase-conjugated mode in
an RPP-smoothed beam. The ignition design analysis gives reasonably
low backscatter levels for the nominal laser intensity and including re-
absorption, with SRS dominating SBS. However, if re-absorption is
neglected, or especially if Γ1 is doubled to bound speckle effects, the
backscatter appears more worrisome. The transmitted laser profile
supports these conclusions.

Ray-based gain calculations have been used for some time to model
LPI experiments. An early example for hohlraum targets is Ref. [38],
where hohlraums filled with CH gas were driven by laser beams with
and without PS and SSD. Without SSD, decent agreement was found
between measurments and the time-dependent SBS gain spectrum.
However, there was a large difference in wavelength of peak SRS be-
tween the measurements and the gain spectrum, which may be due
to laser filamentation changing the location of peak SRS growth. de-
plete can shed light on experiments like these by including more
physics than gain, and giving absolute levels of reflected and trans-
mitted light.

Several future directions exist for enhancing deplete. A superior
approach to include speckle effects, than the 2× Γ1 method discussed
in this paper, is to solve the deplete equations over a speckle length,
for a distribution of pump intensities chosen to obey the known speckle
statistics, and then re-distribute the power (since the speckle pattern
changes over a speckle length). This would require some changes to the
code, and multiply the time needed to solve the ODEs by the number
of pump intensities considered. However, since the overall run time
is dominated by computing coefficients (specifically the Z function
in χj), the runtime will not change as much. Including speckles, even
approximately, in a ray-based code should be pursued due to the much

lower computational cost compared to propagation codes like pf3d.

deplete also enables some new diagnostics and applications. The
pump and scattered intensities found by deplete can be used to com-
pute the local material heating rate due to absorption. Since this is
the prime way the laser affects matter in radiation hydrodynamics,
one could incorporate our ray-based model into a hydrodynamic code.
This would couple laser-plasma interactions to target evolution in a
self-consistent, if simplified, way. In addition, the plasma-wave am-
plitudes found by deplete can be compared against thresholds for
various nonlinearities to assess their relevance, and may allow estima-
tion of hot electron production by SRS.

Despite its promise, there are limits inherent to any ray-based ap-
proach. Namely, any physical connection between different rays (as
found via geometric optics) is neglected. Therefore, changes in the
pump laser such as filamentation, beam spray, and beam bending can-
not be accounted for. In addition, the facts that backscattered light
(particularly SRS) does not follow the same refracted path as the
pump, and that backscatter is sensitive to transverse plasma profiles,
are ignored. A 3D ray-based approach may be able to include these
effects, although the computational cost may approach that of a more
complete paraxial description. Such a code, called slip, is being de-
veloped, which like deplete operates in steady state and uses kinetic
coefficients [22]. This model is in some sense intermediate between
deplete and pf3d.

Even given these more advanced tools, ray-based codes like de-
plete have a valuable role. They can analyze a single ray, using
hundreds of scattered wavelengths, in a few seconds, thus allowing
designs to be analyzed for many times steps and over many rays in a
routine way. The resulting spectra allow for contact with experimental
diagnostics like spectra, and are frequently needed to choose, e.g., the
carrier k and ω for pf3d. Ray-based analyses also provide qualitative
guidance about how certain changes in a design change the LPI.

Laser-plasma interactions have proven to be a very challenging area
of plasma physics, owing to the variety of relevant physics and ex-
treme range of scales involved. This has led to an equally extreme
range of modeling tools, from ray-based gain estimates to 3D kinetic
simulations. By fully exploiting these tools, each with their uses and
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limitations, a more complete picture is emerging.

A newlip

In this appendix, we document the laser interaction post-processor
newlip, of which deplete can be viewed as an extension. The equa-
tions underlying newlip are

dzI0(z) = −κ0I0, (77)

∂zi1(z, ω1) = −I0Γ1i1. (78)

The first of these is Eq. (55) with no pump depletion (τ1 = Γ1 = 0),
and the second is Eq. (56) with no bremsstrahlung or TS (κ1 = Σ1 =
τ1 = 0). That is, only the absorption of the pump, and coherent cou-
pling to scattered light waves, are modeled. The boundary conditions
are I0(z = 0) = I0L (the known pump at the laser entrance), and
i1(z = Lz, ω1) = 1. We thus solve for a unit scattered-wave boundary
seed, which is permissible for this linear system.

We readily solve Eqs. (77-78) to find

I0(z) = I0Le
−

R z
0 dz

′ κ0(z′), (79)

i1(z) = eGl(z), (80)

Gl(z) ≡
∫ Lz

z

dz′ Γ1(z
′)I0(z

′). (81)

Gl(z) is the linear intensity gain exponent, and is the main result of
newlip used to characterize the backscatter level of a target design.
The total gain across the profile is Gl(z = 0).

The numerical computation of Gl suffers from the problem of nar-
row resonances, similar to deplete. The coupling coefficient Γ1 (see
Eq. (24)) is sharply peaked near the resonance point where Re ε = 0.
newlip addresses this challenge in a way analogous to how deplete
handles the coupling-Thomson step, as outlined in Appendix B. In
particular, the integration of Eq. (78) from zn down to zn−1 can be
cast in the form

ln
in−1
1

in1
= ImS0, S0 ≡

∫ zn−1

zn

dz
S

ε
, (82)

with S ≡ −I0fΓSχe(1 + χI). Although S(z)/ε(z) is sharply-peaked
near resonance, S(z) and ε(z) are themselves slowly-varying with z.
We approximate S(z) ≈ Sn−1/2 + (z − zn−1/2)∆S/∆z (and similarly
for ε), with Xn−1/2 ≡ (Xn + Xn−1)/2 and ∆X ≡ (Xn − Xn−1) for
some quantity X . With this representation, and X̂ ≡ Xn−1/2/∆X,
we find

S0 =
∆z∆S

∆ε

[
1 + (ε̂− Ŝ) ln

εn−1

εn

]
. (83)

This formula is valid provided either |Re ε̂| ≥ 1/2 or Im ε̂ 6= 0. For
accuracy, we also want ∆ε to not be too small (which obtains, e.g.,
for a flat profile). We therefore require |ε̂| to be less than some large
number. If any of these conditions does not hold, we simply assume
S = Sn−1/2 and ε = εn−1/2 across the cell to find

S0 = ∆z
Sn−1/2

εn−1/2
. (84)

B Numerical solution of the coupling-

Thomson step

This appendix provides a derivation of Eq. (69), the solution for i1 in
the coupling-Thomson step. We must solve Eq. (62), from zn down to
zn−1, with I0 = In0 and all coefficients except |ε|2 evaluated at zn−1/2.
We write this equation as

∂zi1 = −Kτ +KΓi1
|ε|2

, (85)

Kτ ≡ In0 τ
n−1/2
S gn−1/2

τ , KΓ ≡ In0 Γ
n−1/2
S g

n−1/2
Γ . (86)

As mentioned above, the principal numerical difficulty is that |ε|−2 is
sharply peaked near resonance (Re ε = 0). This rapid variation in
the coefficients of Eq. (85) requires very fine z meshing to correctly
resolve with a standard ODE solver. However, the rapid variation in
|ε|−2 arises from the generally gradual passage of Re ε through zero.
We exploit this fact to Taylor expand ε within each zone, and solve
the resulting system analytically.
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Define the zonal average and difference Xn−1/2 ≡ (1/2)(Xn+Xn−1)
and ∆X ≡ Xn − Xn−1 for the quantity X. We expand ε about the
zone center zn−1/2 to find

ε ≈ εn−1/2 + ẑ∆ε, (87)

ẑ ≡ z − zn−1/2

∆z
. (88)

We can then write

|ε|2 = ε1 + |∆ε|2(ẑ − ẑ0)
2, (89)

ε1 ≡ |∆ε|−2Im
[
εn−1/2∆ε∗

]2
, (90)

ẑ0 ≡ −|∆ε|−2Re
[
εn−1/2∆ε∗

]
. (91)

The linear change of variable

s ≡ |∆ε|
√
ε1

(ẑ − ẑ0) (92)

transforms Eq. (85) to

∂si1 = −Bτ +BΓi1
1 + s2

, (93)

Bτ,Γ ≡ Kτ,Γ∆z

|Im [εn−1/2∆ε∗] |
. (94)

A second change of variable to w ≡ atan s yields

∂wi1 = −(Bτ +BΓi1). (95)

This equation is readily solvable, and gives the solution used above in
Eq. (69):

in−1
1 = (in1 + iτ )e

BΓ∆wn − iτ , (96)

∆wn ≡ atan sn − atan sn−1. (97)

iτ = Bτ/BΓ is also given by Eq. (53).
If ∆ε is sufficiently small (or zero, as for a flat profile), we do not

use Eq. (87), but instead ε ≈ εn−1/2. We can then immediately solve
Eq. (85) to find

in−1
1 = (in1 + iτ ) exp

[
KΓ|εn−1/2|−2∆z

]
− iτ . (98)
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